Degasification system selection for US longwall mines using an expert classification system
نویسنده
چکیده
Methane emissions from the active face areas and from the fractured formations overlying the mined coalbed can affect safety and productivity in longwall mines. Since ventilation alone may not be sufficient to control the methane levels on a longwall operation, gob vent boreholes (GVB), horizontal and vertical drainage boreholes, and their combinations are drilled and used as supplementary methane control measures in many mines. However, in most cases, the types of degasification wellbores chosen are decided based on previous experiences without analyzing the different factors that may affect this decision. This study describes the development of an expert classification system used as a decision tool. It was built using a multilayer perceptron (MLP) type artificial neural network (ANN) structure. The ANN was trained using different geographical locations, longwall operation parameters, and coalbed characteristics as input and was tested to classify the output into four different selections, which are actual degasification designs that US longwall mines utilize. The ANN network selected no degasification, GVB, horizontal and GVB, and horizontal, vertical and GVB options with high accuracy. The results suggest that the model can be used as a decision tool for degasification system selection using siteand mine-specific conditions. Such a model can also be used as a screening tool to decide which degasification design should be investigated in detail with more complex numerical techniques.
منابع مشابه
Artificial neural networks to determine ventilation emissions and optimum degasification strategies for longwall mines
In longwall mining, premining prediction of methane emission rate depends on a number of geological factors, geographical factors, and operational factors. These same factors also can impact the selection of a specific degasification system. This study proposes a principle component analysis (PCA) and artificial neural network (ANN) approach to predict the ventilation methane emission rates of ...
متن کاملA new methane control and prediction software suite for longwall mines
This paper presents technical and application aspects of a new software suite, MCP (Methane Control and Prediction), developed for addressing some of the methane and methane control issues in longwall coal mines. The software suite consists of dynamic link library (DLL) extensions to MS-Access written in C++. In order to create the DLLs, various statistical, mathematical approaches, prediction ...
متن کاملDetermination of a suitable extraction equipment in mechanized longwall mining in steeply inclined coal seams using fuzzy analytical hierarchy method (Case study: Hamkar coal mine, Iran)
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal...
متن کاملModeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks
Methane emissions from a longwall ventilation system are an important indicator of how much methane a particular mine is producing and how much air should be provided to keep the methane levels under statutory limits. Knowing the amount of ventilation methane emission is also important for environmental considerations and for identifying opportunities to capture and utilize the methane for ener...
متن کاملAdvances in grid-based numerical modeling techniques for improving gas management in coal mines
Effective gas management in coal mines, as well as proper ventilation design, is very important for maintaining the safety of underground coal miners. Advances in numerical modeling techniques have enabled evaluations of the coal mining environment using advanced grid designs and computed gas distributions through detailed mathematical models. These models help engineers to “see” the “unseen” a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 35 شماره
صفحات -
تاریخ انتشار 2009